☁️
Cloud Computing
  • Introduction
  • Terminologies
    • Container
    • Kubernetes (K8s)
    • Serverless Computing
  • Services
    • Docker
    • Terraform
  • ☁️Cloud Computing Platforms
    • Google Cloud
      • Google Cloud Essentials
      • Management
        • Cloud IAM
      • Compute
        • Compute Engine
        • Kubernetes Engine
      • Resources
    • IBM Cloud
      • IBM Cloud Shell
      • Compute
      • Containers
      • Developer tools
      • Integration
      • Storage
      • Cloud Paks
    • Microsoft Azure
      • Compute
        • Functions
        • App Services
      • Networking
      • Storage
      • Web
      • Mobile
      • Databases
        • Cosmos DB
      • Analytics
      • AI + Machine Learning
      • Internet of things
      • Security
      • DevOps
      • Monitoring
      • Management and governance
      • Azure Stack
    • Amazon Web Services
    • Resources
  • Qwiklabs Challenge Labs
    • Create and Manage Cloud Resources
    • Deploy and Manage Cloud Environments with Google Cloud
    • Create ML Models with BigQuery ML
    • Insights from Data with BigQuery
    • Build a Website on Google Cloud
    • Build and Deploy a Docker Image to a Kubernetes Cluster
    • Build and Secure Networks in Google Cloud
    • Set Up and Configure a Cloud Environment in Google Cloud
    • Build and Optimize Data Warehouses with BigQuery: Challenge Lab
    • Scale Out and Update a Containerized Application on a Kubernetes Cluster
  • Whizlabs Challenge League
Powered by GitBook
On this page

Was this helpful?

  1. Qwiklabs Challenge Labs

Scale Out and Update a Containerized Application on a Kubernetes Cluster

gsutil cp -r gs://qwiklabs-gcp-00-ef69ef2ca781/echo-web-v2.tar.gz .
tar -xzf echo-web-v2.tar.gz
docker build -t echo-app:v2 .
docker tag echo-app:v2 gcr.io/$DEVSHELL_PROJECT_ID/echo-app:v2
docker push gcr.io/$DEVSHELL_PROJECT_ID/echo-app:v2
gcloud container clusters get-credentials echo-cluster --zone=us-central1-a
kubectl create deployment echo-web --image=gcr.io/qwiklabs-resources/echo-app:v2
kubectl scale deployment echo-web --replicas=2
kubectl expose deployment echo-web --type=LoadBalancer --port 80 --target-port 8000
PreviousBuild and Optimize Data Warehouses with BigQuery: Challenge LabNextWhizlabs Challenge League

Last updated 3 years ago

Was this helpful?